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1. Introduction

Abstract: Most real data setsfrom many sources such as medical sciences,
quality engineering, environmental, econometricsetc. arecorrd ated in nature.
Thepresent articleaimsto derive the necessary regress on analysi stechniques
for a correl ated data set with a special form of compound symmetry error
structure with two sets of observations such that thefirst set containsonly
the first observation, and the other set contains the remaining (N — 1)
observations, where N is the total number of observations. A constant
correlation (p,) is assumed between thefirst and anyone of the remaining
observation, and for the second set, a constant correlation (p) is assumed
between any two observationswithin themselves. Thevarianceis assumed
constant for all the observations. Correlation structural formisknown, but
the parametersinvolved in it are alwaysunknown. Inthearticle, we have
derived arobust estimating method for the best linear unbiased estimators
(BLUE) of all theregression parameters except theintercept, which isoften
unimportant. In addition, we have devel oped arobust testing procedure for
any set of linear hypotheses regarding the unknown regressi on coefficients,
and along with a confidence dlipsoid for a set of estimable functions of
regression coefficients. Index of fit for the fitted regression eguation has
also been developed. An example with simulated data illustrates all the
developed theoriesin the article.

Keywords: Confidence ellipsoid; Correlated error; Index of fit; Linear
hypothesis; Regression analysis; Robust estimation.

Regression analysis is conceptually a ssimple statistical method for establishing the functional
relationships among variables. The reationship is expressed in the form of an equation, or a
mathematical function connecting the response (dependent variable) with a set of explanatory
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(independent) variables. Therefore, it can be said that regression analysis is a package full of data
analytic techniques which are used to help for understanding the interreationship among variables
in a certain environment. For a detailed regression analysis discussion, readers are suggested to go
through the books by Draper and Smith (1998), Chatterjee and Price (2000), Palta (2003), Box and
Draper (2007) etc. The data source may be either from environment (environmental data), or may
be collected from a controlled experiment (experimental data).

Regression analysistheories aregenerally derived always with some basic standard assumptions
such as the errors are independent and identically distributed (11D) with equal variance. Due to
these above assumptions, the ordinary least squares (OLS) method is allowed for estimating the
regression parameters. If the errors are correlated with a known dispersion matrix, while the equal
varianceisunknown, the generalized least squares (GL S) method is allowed for estimating regression
parameters. Generally, the dispersion matrix structure can be realized from the data nature, while
the corrdation parameters that areinvolved in it are always unknown. There are many sources and
causes of arising correlation in the errors which are clearly illustrated in these books by Chatterjee
and Price (2000), Palta (2003), Das (2014), Leeet al. (2017).

Correlated regression designs are well described in the book by Das (2014), which has been
introduced by Panda and Das (1994). There are many research articles on the correlated regression
designsby Das (1997, 2003, 2004), and Das and Park (2006, 2007, 2008). For the correlated model,
Bischoff (1996) suggested the estimation of regression parameters by OLS method, which is not
appropriate. Das (2010, 2014) has developed regression analysis techniques for the compound
symmetric, autocorrelated, tri-diagonal correlated error structures. Optimal designsfor tri-diagonal
and autocorrelated error structures are studied by different authors such as Kiefer and Wynn (1981,
1984), Bischoff (1992, 1995), Box and Draper (2007) etc.

For the correlated regression analysis with unknown error dispersion matrix, GLS method is
not applicable for estimating the unknown regression parameters, while the maximum likelihood
estimation (MLE) method is used frequently. Mukherjee (1981) has initiated an explicit solution of
the ML equationsfor estimating the unknown correlation parameters for apositive definite variance-
covariance matrix, or its inverse through spectral decompoasition. Different iterative ML equations
solution methods are given in Rubin and Szatrowski (1982), Rogers and Young (1977), Szatrowski
(1978), Palta (2003) and Leeet al. (2017). Many authors have studied iterative regression coefficients
estimation and asymptotic statistical inference methods for the correlated observations with
compound symmetry, tri-diagonal, inter-class, intra-class, compound autocorrel ated error structures,
but thereis no study of regression analysis with a special form of compound symmetry correl ated
error structure as stated in the Abstract.

The rest of the paper is organized as follows. Section 2 presents a correlated regression model
and estimation method. Regression parameters interpretation and index of fit, along with their
illustrations are presented in Section 3, and concluding remarks are given in Section 4.
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2. Correlated Regression Model and Estimations

2.1 Model

Supposethere arep factorsx , X, ..., X, andtheir u-th observation (X ;, X ... .xup), 1<u<N,yieldsa
response of y, on the study variable y. Assuming that the response surface is of first-order, or

linear,we adopt the mode

Yu :Bo+2::1 BiXy +&; I<u<N

or,

y=Xp+e 1
wherey = (y,, ¥, ..., )’ IS the vector of recorded observations on the study variabley, B = (B, ...,
Bp)' is the vector of regression coefficients, X = (1:(x,); 1 <k<p, 1 <u < N) is the model matrix.
Further, e is the vector of errors which are assumed to be normally distributed with E(e) = 0 and
D(e) = o®W with rank (W) = N. Therefore ‘€ follows a multivariate normal distribution MN(O,
o?W). Thematrix W may represent any correlated error structure. In general, the matrix Wisunknown
but for all the calculations as usual, W is assumed to be known. In practice, however, W includes a
number of parameters unknown, and in the calculations which follow, the expressions for W and
Wtare replaced by those obtained by replacing the unknown parameters by their suitable estimates
or some assumed values. If there is a curvature in the system, then a polynomial of higher degree,
such as the second-order model can be used as given below:

yu :Bo+zip:1 Bixﬂi +22ipgj:1 Bijx“ix”j +e“;1SUS N'
or,

y=Xp+e 2)
wherey = (y,, Y, ..., )" isthe vector of recorded observations on the study variabley, B* = (B, B,
Bp, ST Blp, Bogs +ons sz, B(H)p)' is the vector of regression coefficients of order

(p+2j><l
2

and X, = (1.Z') is the model matrix, where Z' is given below by using the Hadamard product (o) as
Z = (X, - Xoo X 0 Xy, eeey Xy 0 X0, X 0 Xy © xp),
wherex = (X, X, ..., X;)" and x o X = (xlixlj, ) ST xNixNJ.)'.

Corrdated regression models are wdll illustrated in the book by Das (2014). These models are
used in many fields such as health research (book by Palta, 2003), quality engineering ( book by
Myers et al. 2002; Lee et al. 2017) etc. Myers et al. (2002, p.128) illustrated that in industrial
production processes experimental units are not independent at times by design, which incorporates
correlation among observations via a repeated measuresscenario as in split plot design.
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Intra-class, inter-class, compound symmetry, tri-diagonal and autocorrelated error structures
are wel described in the book by Das (2014). Intra-class structure is the simplest structure with
constant corrdation, which is known as uniform structure. Inter-class is an extension of intra-class
structure, where within groups there is constant correlation, and in between groups there is no
correlation. Compound symmetry structure is an extension of inter-class structure, where within
groups there is a constant correlation, and between groups thereis another correlation (Das, 2014).

The present article considers a special form of compound symmetry error structure with two
sets of observations such that the first set contains only the first observation, and the other set
contains theremaining (N — 1) observations, where N isthetotal number of observations. A constant
correlation (p,) is assumed between the first and anyof the remaining observations, and for the
second set, a constant correlation (p) is assumed between any two observations within themsd ves.
The varianceis assumed constant (o) for all the observations. This situation is commonly observed
when themachineis started initially, thefirst observation may be recorded with little more disturbance
than theremaining others. Asaresult, the corrdation between thefirst observation with theremaining
is little different than the correlation between any two observations of the rest, excluding the first
one. This is observed in practice in any production process, or in the measuring units with some
instruments, etc. Thefirst group may contain one or more observations. In the very sensitive cases,
it may be only the first observation as the first group, and the rest others as the second group.The
special form of compound symmetry structure as stated above can be expressed as

1 pp oo ps
p, 1 p .. p
1 .
D(e) :GZ pl p p
p P P P1
It is simply represented by
D(e) = wo?W 3)

2.2. Regression Paramter Estimation

The present section focuses on the derivation of the regression parameters, correation coefficients
and error variance estimation methods. The first-order linear modd as given in equation (1) is
considered herein, and the similar method can be used for the second-order modd as in equation
(2).

Suppose there are p-factor (x, X, ..., xp) and their u-thrunis (X ,, X, .-, xup); 1<u<Nyieds
aresponse y, on the study variable y. Assuming that there are two groups of observations. First
group contains only one observationy, and the second group contains the other (N — 1) observations

Yy Yar -+ ¥y)- For first-order linear model we have
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yu :B0+ZE:1Bquk +QJ,1SUS N
o, Vo= BXy t B Xy tBX,t .t Bpxup +e,1<u<N

or, y=Xp+e 4

wherey = (y,, Y,, ..., ¥,)'- €, is the corresponding error of y , B and x, are as in equation (1). Note
that E(8 = 0, D(€) = o®W, e ~ MN(0, c?W) where W as in equation (3).
Let us define
Z=y,~-ysu=12..,(N-1)

or Z,=B,(X,—X%) ¥ B(X,—X,) F o F Bp(xup—pr) +(e,—-e)u=12.,(N-1)

or Z,=BS,tBS,t- tBs,teu=12 .., (N-1)
where,
or Z=%H +e )]

Notethat, E(e ) = 0;

v(eu)={262(l_pl);u=l
26°(2-p);u=2.3,...,(N-2)

Cov(e, €,)=0c(1-p);1<uzu<(N-1)

Therefore, E(e) = 0, D(e) = €2W, (say), where 67 = 26%(1 — p) and W, is defined as follows :

1-p 1 1

1-p 2 2

3 1o
\/Vl:

11

2 2

The first cell element of W, is r‘;l which contains two unknown parameters p, and p. We

partitioned W, into four sub matrix namely W, , W, , W, andW, defineas follows:

W \Aé'll WJiZ
Tlw,w,

121 122
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where the first partitioned matrix W, contains only the first cell element is rpl W, andW,

11 1 N
are the transpose to each other having the elements (E’E’ Ej with dimension (N —1x1).

For estimation purposes, we have taken the marginal distribution of Z, = (Z,, Z,, ..., Z(N_l))',
excluding Z, fromthe Z. From the model as in equation (5), it can be considered for Z, as follows:
Zu = BlSul + BZSuZ + Bpsup+ eu; u= 21 37 R N _1
or Z,=8n+ e, (6)
where § isthenew mode matrix with s, = (X, —Xy); u=2,3,..,N-1,j=1,2,...,p; €,= (€, &,
e €4,)s E(€y) = 0; D(e,) = o W, 6,2 = 26%(1 - p); and €, ~ MN(O, c? W, ). The related
dispersion matrix is lez (with order N-2xN-2) , and it can be shortly written as lez =

1 1
(E Iy o *5 ENz) =W, (say), where | is an identity matrix, E isa matrix of all elements unity, and

W, , is explicitly expressed as follows:

1

1 L1
2 7 2
2t
W, =
i1
2 2

The modd in equation (6) is a generalized linear least squares mode (with known lez =W,,
say). Therefore, we have the following results for the reduced modd (6).
Theorm 1. Under the modd (6), the best linear unbiased estimator (BLUE) of n is

n=(SW,"S,) " (SW;,"'Z,) (7)

_ 2
where Wzlz(z*'Nz‘N—lEM)'

Theorm 2. An unbiased estimator (UE) of 6,> = 26*(1 —p) is

~2_ N7 - (SW, SN
T N-2-p ®
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Notethat 7| ~ MN(n, o?(SW,*S,)™), and /| doesnot depend on theother unknown parameters

p, p, and pf .
The scheme for calculations of other unknown parameters is given hereunder. From eguation
(4), one can find the estimate of 3 as

Bo=Y-BX —B% —.~B,X, ©)
where ﬁl, ﬁz, |§p areasin equation (7) because 1 = ([31, [32, ﬁp)', Y, X, ..., X, (respective means)

are known.
Theorem 3. An estimate of p, for known is c? is

1 Zé\Nz_lZo — ﬁ(S)'\Nz_ls))ﬁ

S
To estimate p for unknown o?, an estimate of o2 is required.
Theorem 4. An estimate of o2 (from the full modd (4)) is
5% = &%
N-p-1 (11)

1
where 50 =W 2(Y - XB), [3 = ([30, n")" and W is obtained from the scheme given below.
The schemefor calculations of W (i.e., p, p, and ¢?) is given below.
1. Assumesomevaueof p, € (-1, 1).
2. Compute p using Equation (10) (taking o® = 1 in the first iteration, and for any other
iteration, 62 by plugging for o obtained in step 5 just in the previous iteration).
3. With the assumed value of p,, say p,, and the estimate of p, say p in step 2, compute W
(examining W is non-singular) and W as in Equation (3).
4. Caculate B =(XW™X)(XWY), assuming X has full column rank.
5. Compute 62 using Equation (11).
6. Calculate S (p,, B) = (Y — XBYW (Y — XB) , where W as in step 3 and P is asin step.
The same routine of calculations 1 through 6 is to be followed for different permissible values
of p, in its range. We select that value of p, as the final estimate of p, for which So(ﬁl,ﬁ) is
minimum. For the final estimate of p,, we get the final estimate of p in step 2. Thus, for the final
estimates of p and p,, one can compute W (an estimate of W) in step 3. Note that the estimates of all

the regression parameters 3, (in (9)) and n in (7) are freeof and , so the above derived estimation
procedure of regression parameters is a robust method.
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3. Inference of Regression Parameters and I ndex of Fit

Testing of hypothesis regarding the unknown regression parameters is an important problem under
regression analysis. The present section focuses on the necessary results for testing a set of linear
hypotheses based on the model (6), where €, ~ MN(0, 62W,), o2 is unknown but W, is known.

3.1. Testing of Hypothesis

A set of m linear independent hypothesis regarding the unknown regression parameters are stated
as follows:

LBy + ...+ 1,,B, =l (known)
By A 1B, =15 (known)
HO . .

LBy + -+ 1B = 1o (known)

or H,: Rn =1, (known) against H, : Rn # | . Hererank (R) = m, where

Notethat n ~ MN(n, c2(§W,'S)™) as given in Section 2, therefore,
Rn ~MN(Rn, o?R(§W;'S)"'R) and under H,, R ~MN(l,, c?R(SW;,'S)'R’).
Therefore, under H,

RA ~1,) [oTREW;'S) R (R ~1) ~ 72,

where the degree of freedom mis given by the number of independent linear hypotheses in the Rn
1

vector. Also for the model in Equation (6), Epr=W, 2(Z, — S1), Eror /05 ~ Ain-2)p A it iS
independent of Rn. Thus we have the following result.

Theorem 5. If Rn = is true, the basic result is

- _ (Ri-1,)[RESW,'S) *RT*(Ri-l)/m _

Ay oA~ m,(N-2)-p* 12
Econ HN-2~ 1} oo 2
H, is rejected at 1000% level of significance, if observed F>F . . and accepted otherwise.

Note that the test statistic in (12) is free of p, and p, so the above test procedureis robust.

8 Journal of Econometricsand Statistics, 1(1) © 2021
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3.2 Confidence éellipsoids of regression parameters

In the present subsection, the confidence ellipsoids for a set of independent linear functions of
regression parameters and the confidenceinterval for a linear function of regression parameters are
developed. Notethat S hasfull rank (assumed), so every linear functionof B, B, ..., B, areestimable
for the linear modd in Equation (6).

Suppose vy, y,, ..., ¥, arev indgpendent linear functionsof B, B, ..., B, Lety, = Wy Wy oo
y,)" be avector of order v x 1. Then

y=Cn,

wheren = (B, ..., Bp)' and C(known) is av x p matrix whose rows are linearly independent. Then
v = AZ, isthe GLS estimate of y (for the mode in Equation (6)), and A = ((%)) (known matrix

depending on v, ). Thevariance-covariance matrix of  is then

Dis(y) = ADis(Z,) A = 67 (AW, A),
w, =y le 0 2 ' isi
where W, = SN2 +§ n-2 |- Notethat v ~ MN(y,o; (AW, A)) and is independent of

é(,)RéOR _ (Zo — S)ﬁ)’vvz_l(zo — S)ﬁ) — 2
2 2 X(n-2)-p
Gy Gy

Again
(= w) {07 (AW, A} (F - ) ~ 10,
and independent of &.&,, /o> (for the mode in Equation (6)). Therefore, we have the following

result.
Theorem 6. The distribution of the test statistic is

I\ — ) (AW A) ( —y) /v -

Gl (N=2=p) 7 =
Therefore,
(W =) (AW, A)H(§ - ) S VS, (v o), (14
where §* =—S0RS® _ which is an UE of o2 in Equation (8).
(N-2)-p

Inequality (14) determines an ellipsoid in the v-dimensional -space with center
V=Y, Vs, ), and the probability that this random ellipsoid covers the true parameter v is
(1 - o), no matter whatever be the values of p, and p unknown parameters.

Journal of Econometricsand Statistics, 1(1) © 2021 9
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We may obtain a confidence interval for a single linear function y = ¢'n(c # 0) by specializing
the above calculation to v = 1. The resulting confidence interval is given by

@W,8) " (¥ —w)* < S°F, vz p (15)
where y =a'Z, is the GLS estimate of y. Note that Var () = a'Dis(Z,)a = a’(a'W,a) , and its
unbiased estimate 67, = s*(a'W,a). We may write the Inequality (15) as
w—ta' o, S\|/+\I/—taq Gy (16)
the probability that this random interval covers the unknown vy is (1 — o). Theinterval (16) could

also be derived from the fact that (¢ —vy)/ 6@ ~tn_2-p- Note that the above inference procedures

arefreeof thevalues of p, and p unknown parameters. Therefore, all thederived inference procedures
arerobust.

33 Index of fit

Theoriginal modd of the present study is given in Equation (4), and Equation (6) is the transformed
(or reduced) modd. In the present section, the index of fit is suggested for the models in Equations
(4) and (6). Analogous to uncorrelated errors, two criteria of judging the best fit are described for
the moddsin Equations (4) and (6), under a special form of compound symmetry error structurein
Equation (3).

For multiple regression analysis with uncorrdated and homoscedastic errors, the index of fit
ismeasured by the multiple correlation coefficient (R?), and adjusted multiple correlation coefficient
(R;dj) of the fitted regression mode. Analogous to uncorrelated case, we define the multiple
correlation coefficients R¥(Y), R¥(Z,), and adjusted multiple correlation coefficients RZ,(Y), R;(Z,)
for the fitted models in Equations (4) and (6), respectively, as follow:

R%(Y) = Corr 2(Y,Y) and RZ(ZO)=1—%, (17)
ReM)=1- Pl @R and Ry (2)=1- (2 R@). a9

1

where &, =W, ?(Z, - $1), TSS,, = (Z,— Z)W;(Z,-Z,), Z,=>.", z, (N - 2) (for themodel
in Equation (6)). Generally, R? and RZ; as in Equations (17) and (18) are both close to unity for a
good fitted modd (lllustration Section 3.4).
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34. /llustration

In the above, all the necessary regression analysis results are derived based on theory. It is noted
that the considered special compound symmetry correlated error structure contains two unknown
correlation coefficients p, and p, but the derived results are free of both these two correlation
coefficients. In this section, a simulated data example illustrates all the above derived results. Let
‘y' be the response variable with sixty observations in total. According to the defined structure
there are two groups, the first group contains only one observation and the other has the rest fifty
nine observations.

The model matrix X is formed using three factors (exploratory variables) x;, X, and x,. The
appropriate changes of origin and scale are used for the exploratory variables such that the values
lie between —1 to 1 (the range within which the experimentation is conducted). Considering three
factors as explanatory variables the assumed mode is

Table 1 : Responses under the smulation setting of (c>=2,p = 0.8, p,=0.1)

Observation \alue Observation \alue Observation Value
1 3.358 21 3.265 41 6.829
2 3.873 22 4.320 42 -0.393
3 -0.441 23 3.233 43 2532
4 7.062 24 -0.419 44 4.559
5 2.014 25 6.985 45 2.295
6 3.009 26 7.045 46 3.168
7 5.078 27 -0.381 47 4.566
8 2.695 28 3.221 48 -0.959
9 -0.965 29 4.663 49 16.722

10 7.458 30 3.374 50 2.608
11 7.044 31 3.263 51 3.154
12 -1.533 32 4.580 52 4,773
13 3.060 33 -0.572 53 2.433
14 3.759 34 7.207 54 —-0.486
15 3.590 35 3.359 55 7.216
16 2.924 36 3.093 56 7.194
17 5.147 37 5.248 57 0.045
18 -0.854 38 3.246 58 3.165
19 6.499 39 -0.777 59 4.104
20 2.746 40 7.341 60 3.498

Journal of Econometricsand Statistics, 1(1) © 2021 11
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Y, =Byt BX, ¥ BX, +BXsU=12,..,60 (29)
The generated valuesaredisplayed in Table 1, using the fixed modd matix X, whichis defined
as
10 0 O
11 1 1
1 -1 1 -1
11 -1 -1
1 -1-11
10 0 O
D
11 1 1
X = D , whereD=|1 -1 -1 -1
g 1 -1 1 -1
11 11
11 -1 -1
1 -1 1 1
1 -1-11
11 1 -1
10 0 O

In the absence of real data we generate observations according to the formula (19) with 8, =
35,p,=25,B,=-15,B,=0.05 6°= 2, p = 0.8 and p, = 0.1 using the above model matrix “X"
and e ~ MN(0, o®W) where W is given in eguation (3). The observations obtained are given in
Table 1. For this present simulation study, the article considers the following eight combinations of
parameters (¢, p, p,), with fixed B, = 3.5, B, = 2.5, B, = 1.5, B, = 0.05. The combinations are ¢*
=1,2,p=04,0.8,p,=1.10.6.

Using these combinations, we take each simulation setting and repeat the entire calculation
100 times. The sample bias, sample variance for every estimate, where sample bias and sample
variance for the parameter 0 are defined by

2
29 and Var(é) = M
100 100

Summarized simulation results are given in Table 2.
We consider the following four linear hypotheses (given in Table 3) for testing of hypotheses.

Each hypothesis is tested 100 times using the equation (12) and the results are reported in Table 3.

The average values of 200 replicates for two index of fit measures R(Y), R¥(Z,), RZ,(Y) and
RE,(Z,) using the equations (17 and 18) arereported in Table 4. Thesetwo index of fit measures are

Bias(d) =00/, 6

12 Journal of Econometricsand Statistics, 1(1) © 2021
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Table 2: Simulation results: ﬁo,ﬁl,ﬁz,ﬁ”b,h,al and 6°

1

B,=35 p,=25 B,=-15 p,=0.05 &2
Po Py P, Bsp P Sp

p=08,p,=0106°=1

Mean 3.441 2.505 -1.500 0.040 0.759 0.931 0.891 0.405

Bias (é) 0.059 0.005 0.0002 0.009 0.041 0.831 0.109 0.005

Var (é) 0.863 0.004 0.004 0.003 0.015 0.005 0.018 0.006
p=08,p,=0106°=2

Mean 3.593 2.508 -1.502 0.048 0.552 0.829 0.920 0.811

Bias (é) 0.093 0.008 0.002 0.001 0.248 0.729 1.080 0.011

Var (é) 1.453 0.007 0.010 0.008 0.010 0.003 0.011 0.024
p=04,p,=01,06°=1

Mean 3.473 2.501 -1.502 0.045 0.375 0.743 0.983 1.230

Bias (é) 0.026 0.001 0.002 0.004 0.025 0.643 0.016 0.030

Var (é) 0.417 0.013 0.013 0.014 0.011 0.003 0.0003  0.050
p=04,p,=01,06°=2

Mean 3.460 2.532 -1.504 0.044 -0.232  0.443 1.009 2.490

Bias gé) 0.039 0.032 0.004 0.005 0.632 0.343 0.990 0.090

Ver (0) 0.794 0.023 0.023 0.028 0.046 0.012 0.0003  0.202
p=04,p,=06,06°=1

Mean 3.542 2.505 -1.507 0.043 0.406 0.759 0.996 1.184

Bias gé) 0.042 0.005 0.007 0.006 0.006 0.159 0.003 0.015

Ver (0) 0.505 0.010 0.011 0.013 0.011 0.003 0.0001  0.045
p=04,p,=06,6°=2

Mean 3.551 2.507 -1.514 0.040 -0.198  0.460 1.0009 2.399

Bias gé) 0.051 0.007 0.014 0.009 0.598 0.140 0.999  0.0003

Ver (0) 0.728 0.024 0.019 0.025 0.043 0.011 0.000 0.177
p=08,p,=0606°=1

Mean 3.484 2.505 -1.495 0.054 0.789 0.945 0.956 0.401

Bias (é) 0.015 0.005 0.004 0.004 0.010 0.345 0.043 0.001

Var (é) 0.795 0.003 0.004 0.003 0.001 0.002 0.004 0.004
p=08,p,=0606°=2

Mean 3.467 2.495 -1.497 0.058 0.585 0.848 0.962 0.794

Bias (é) 0.032 0.004 0.002 0.008 0.214 0.248 1.037 0.005

Var (é) 1.349 0.007 0.008 0.007 0.007 0.003 0.004 0.026
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Table 3 : Test result from 100 replicationswith o = 0.05

Null Hypothesis Degrees of freedom Accepted cases Rejected cases
Hy B, =B, =B,=0 (3,54) 0 100
H,:B,=0 (1, 54) 0 100

H,: B,=0 (1, 54) 0 100
H,:B,=0 (1, 54) 93 7

considered for the following four models (replicates generated with ,= 3.5, B, = 2.5, B, =-1.5, B,
=0.0506°=2,p=0.8andp, = 0.1 values):
Moy =By + B + BX + B+ &,
M,y =By + BX + BX + B+ &,
My =By + BX + BX + B+ &,
M y=B,+BX *+e

Table 4: Average index of fit measuresfrom 200 replicates for the four modelsM toM,

Model R(Y) RY(Z) R,(Y) R, (Z)
M, 0.9251 0.9255 0.9211 0.9227
M, 0.9222 0.9224 0.9181 0.9196
M, 0.6971 0.3975 0.6916 0.3938
M, 0.6954 0.3959 0.6898 0.3921

4. Conclusions

The present article derives the regression analysis with correlated observations under a special type
of compound symmetry corrdated error structure. The derived estimation method gives the best
linear unbiased estimator (BLUE) for all theregression parameters except theintercept. Analytically,
the estimates of all regression coefficients §’s, 62, p and p, are derived herein. The simulation study
clearly shows that each estimated value is very closeto its imputed value. Table 3 reflects the true
values of regression parameters. Thetrue mode can be sdected from Table 4, which expresses that
M, and M, models are equivalent, while models M, and M, are incorrect. The values of Ré(Y) and
RE,(Y) arethereal index of fit measures for the original model, whereras R¥(Z ) and RZ (Z,) arethe
measures for the reduced model. It can be observed that the value of R¥(Z,) (or, RZ,(Z,)) is more
than R2(Y) (or, R;dj(Y)) for the correct models and these values are less for incorrect modes (Table
4), as R¥(Z,) is based on the BLUEs. It has been observed that for a regression model with a special
type of compound symmetric error structure (considered herein), the estimates of regression

parameters (n) are generally used for deriving all theresults, while the estimates ﬁo, p,and p are
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not used in any derived results. The estimates ﬁo, p, and are used in case of theindex of fit measure
for thefull modd only, which is not important in the study. All the derived results are free of all the
values of the two correlation coefficients, so the present study is a robust regression analysis.
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