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Abstract: Most real data sets from many sources such as medical sciences,
quality engineering, environmental, econometrics etc. are correlated in nature.
The present article aims to derive the necessary regression analysis techniques
for a correlated data set with a special form of compound symmetry error
structure with two sets of observations such that the first set contains only
the first observation, and the other set contains the remaining (N – 1)
observations, where N is the total number of observations. A constant
correlation (�

1
) is assumed between the first and anyone of the remaining

observation, and for the second set, a constant correlation (�) is assumed
between any two observations within themselves. The variance is assumed
constant for all the observations. Correlation structural form is known, but
the parameters involved in it are always unknown.  In the article, we have
derived a robust estimating method for the best linear unbiased estimators
(BLUE) of all the regression parameters except the intercept, which is often
unimportant. In addition, we have developed a robust testing procedure for
any set of linear hypotheses regarding the unknown regression coefficients,
and along with a confidence ellipsoid for a set of estimable functions of
regression coefficients. Index of fit for the fitted regression equation has
also been developed. An example with simulated data illustrates all the
developed theories in the article.

Keywords: Confidence ellipsoid; Correlated error; Index of fit; Linear
hypothesis; Regression analysis; Robust estimation.

1. Introduction

Regression analysis is conceptually a simple statistical method for establishing the functional
relationships among variables. The relationship is expressed in the form of an equation, or a
mathematical function connecting the response (dependent variable) with a set of explanatory

Journal of Econometrics and Statistics
Vol. 1, Issue 1, 2021, pp. 1-16

© ARF India. All Right Reserved
URL : www.arfjournals.com/jes

Journal of Econometrics and Statistics, 1(1) © 2021 1

Article History
Received : 9 March 2021
Revised : 12 March 2021
Accepted : 24 March 2021

Published : 2 September 2021

To cite this paper
Das, R. N., & Mukherjee, S.
(2021). Robust Regression
Analysis under a Special
Compound Symmetry Structure.
Journal of Econometrics and
Statistics. 1(1), 1-16.



Rabindra Nath Das and Sabyasachi Mukherjee

2 Journal of Econometrics and Statistics, 1(1) © 2021

(independent) variables. Therefore, it can be said that regression analysis is a package full of data
analytic techniques which are used to help for understanding the interrelationship among variables
in a certain environment. For a detailed regression analysis discussion, readers are suggested to go
through the books by Draper and Smith (1998), Chatterjee and Price (2000), Palta (2003), Box and
Draper (2007) etc. The data source may be either from environment (environmental data), or may
be collected from a controlled experiment (experimental data).

Regression analysis theories are generally derived always with some basic standard assumptions
such as the errors are independent and identically distributed (IID) with equal variance. Due to
these above assumptions, the ordinary least squares (OLS) method is allowed for estimating the
regression parameters. If the errors are correlated with a known dispersion matrix, while the equal
variance is unknown, the generalized least squares (GLS) method is allowed for estimating regression
parameters.  Generally, the dispersion matrix structure can be realized from the data nature, while
the correlation parameters that are involved in it are always unknown. There are many sources and
causes of arising correlation in the errors which are clearly illustrated in these books by Chatterjee
and Price (2000), Palta (2003), Das (2014), Lee et al. (2017).

Correlated regression designs are well described in the book by Das (2014), which has been
introduced by Panda and Das (1994). There are many research articles on the correlated regression
designs by Das (1997, 2003, 2004), and Das and Park (2006, 2007, 2008). For the correlated model,
Bischoff (1996) suggested the estimation of regression parameters by OLS method, which is not
appropriate. Das (2010, 2014) has developed regression analysis techniques for the compound
symmetric, autocorrelated, tri-diagonal correlated error structures. Optimal designs for tri-diagonal
and autocorrelated error structures are studied by different authors such as Kiefer and Wynn (1981,
1984), Bischoff (1992, 1995), Box and Draper (2007) etc.

 For the correlated regression analysis with unknown error dispersion matrix, GLS method is
not applicable for estimating the unknown regression parameters, while the maximum likelihood
estimation (MLE) method is used frequently. Mukherjee (1981) has initiated an explicit solution of
the ML equations for estimating the unknown correlation parameters for a positive definite variance-
covariance matrix, or its inverse through spectral decomposition. Different iterative ML equations
solution methods are given in Rubin and Szatrowski (1982), Rogers and Young (1977), Szatrowski
(1978), Palta (2003) and Lee et al. (2017). Many authors have studied iterative regression coefficients
estimation and asymptotic statistical inference methods for the correlated observations with
compound symmetry, tri-diagonal, inter-class, intra-class, compound autocorrelated error structures,
but there is no study of regression analysis with a special form of compound symmetry correlated
error structure as stated in the Abstract.

The rest of the paper is organized as follows. Section 2 presents a correlated regression model
and estimation method. Regression parameters interpretation and index of fit, along with their
illustrations are presented in Section 3, and concluding remarks  are given in Section 4.
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2. Correlated Regression Model and Estimations

2.1. Model

Suppose there are p factors x1, x2, ..., xp
 and their u-th observation (x

u1, xu2,...xup
), 1 ��u ��N, yields a

response of y
u
 on the study variable y. Assuming that the response surface is of first-order, or

linear,we adopt the model

0 1
;  1

p

u k uk uk
y x e < u N

or,

y = X��+ e (1)
where y = (y1, y2, ..., yN

)� is the vector of recorded observations on the study variable y, ��= (�0, ...,
�

p
)� is the vector of regression coefficients, X = (1:(x

uk
); 1 ��k ��p, 1 ��u ��N) is the model matrix.

Further, e is the vector of errors which are assumed to be normally distributed with E(e) = 0 and
D(e) = �2W with rank (W) = N. Therefore ‘e’ follows a multivariate normal distribution MN(0,
�2W). The matrix W may represent any correlated error structure. In general, the matrix W is unknown
but for all the calculations as usual, W is assumed to be known. In practice, however, W includes a
number of parameters unknown, and in the calculations which follow, the expressions for W and
W–1 are replaced by those obtained by replacing the unknown parameters by their suitable estimates
or some assumed values. If there is a curvature in the system, then a polynomial of higher degree,
such as the second-order model can be used as given below:

0 1 1
;1 ,

p p

u i ui ij ui uj ui i j
y x x x e u N

or,

y = X1�
* + e, (2)

where y = (y1, y2, ..., yN
)��is the vector of recorded observations on the study variable y, �* = (�0, �1,

...,��
p
, �11, ..., �12, ..., �1p

, �23, ..., �2p
, ..., �(p–1)p)� is the vector of regression coefficients of order

2
1

2

p �� �
�� �

� �
and X1 = (1:Z*) is the model matrix, where Z* is given below by using the Hadamard product (�) as

Z* = (x1, ..., xp
, x1 ��x1, ..., xp

, ��x2, x1 ��xp–1 ��xp
),

where x
i
 = (x1i

, x2i
, ..., x

Ni
)� and x

i
 � x

j
 = (x1i

x
1j
, x2j

, ..., x
Ni

x
Nj

)�.
Correlated regression models are well illustrated in the book by Das (2014). These models are

used in many fields such as health research (book by Palta, 2003),  quality engineering ( book by
Myers et al. 2002; Lee et al. 2017) etc. Myers et al. (2002, p.128) illustrated that in industrial
production processes experimental units are not independent at times by design, which incorporates
correlation among observations via a repeated measuresscenario as in split plot design.
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Intra-class, inter-class, compound symmetry, tri-diagonal and autocorrelated error structures
are well described in the book by Das (2014). Intra-class structure is the simplest structure with
constant correlation, which is known as uniform structure. Inter-class is an extension of intra-class
structure, where within groups there is constant correlation, and in between groups there is no
correlation. Compound symmetry structure is an extension of inter-class structure, where within
groups there is a constant correlation, and between groups there is another correlation (Das, 2014).

The present article considers a special form of compound symmetry error structure with two
sets of observations such that the first set contains only the first observation, and the other set
contains the remaining (N – 1) observations, where  N is the total number of observations. A constant
correlation (�1) is assumed between the first and anyof the remaining  observations, and for the
second set, a constant correlation (�) is assumed between any two observations within themselves.
The variance is assumed constant (�2) for all the observations. This situation is commonly observed
when the machine is started initially, the first observation may be recorded with little more disturbance
than the remaining others. As a result, the correlation between the first observation with the remaining
is little different than the correlation between any two observations of the rest, excluding the first
one. This is observed in practice in any production process, or in the measuring units with some
instruments, etc. The first group may contain one or more observations. In the very sensitive cases,
it may be only the first observation as the first group, and the rest others as the second group.The
special form of compound symmetry structure as stated above can be expressed as

1 1 1

1

12

1

1 ...

1 ...

1 ...
( )

. . . . .

. . . . .

...

D e

It is simply represented by

D(e) = w�2W (3)

2.2. Regression Paramter Estimation

The present section focuses on the derivation of the regression parameters, correlation coefficients
and error variance estimation methods. The first-order linear model as given in equation (1) is
considered herein, and the similar method can be used for the second-order model as in equation
(2).

Suppose there are p-factor (x1, x2, ..., xp
) and their u-th run is (x

u1, xu2
, ..., x

up
); 1 ��u ��N yields

a response y
u
 on the study variable y. Assuming that there are two groups of observations. First

group contains only one observation y1 and the second group contains the other (N – 1) observations
(y2, y3, ..., yN

). For first-order linear model we have
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0 1
;1

p

u k uk uk
y x e u N

�
� � � � � � ��

or, y
u
 = �1xu1 + �1xu1 + �2xu2 + ... + �

p
x

up
 + e

u
; 1 ��u ��N

or, y = X  + e (4)

where y = (y1, y2, ..., yN
)�. e

u
 is the corresponding error of y

u
,  and x

uk
 are as in equation (1). Note

that E(e) = 0, D(e) = �2W, e ~ MN(0, �2W) where W as in equation (3).
Let us define

Z
u
 = y

u
 – y

N
; u = 1, 2, ..., (N – 1)

or Z
u
 = �1(xu1 – x

N1) + �2(xu2 – x
N2) + ... + �

p
(x

up
 – x

Np
) + (e

u
 – e

N
); u = 1, 2, ..., (N – 1)

or Z
u
 = �1su1 + �2su2 + ... + �

p
s

up
 + �

u
; u = 1, 2, ..., (N – 1)

where,

or Z = S  + � (5)
Note that, E(�

u
) = 0;

2
1

2

2 (1 ); 1
( )

2 (2 ); 2,3,..., ( 1)
u

u
V

u N

� � �� ��� � �
� � � � ���

Cov(�
u
, �

u�) = �2(1 – �); 1 ��u ��u����(N – 1)

Therefore, E(�) = 0, D(�) = �1
2W1 (say), where �1

2 = 2�2(1 – �) and W1 is defined as follows :

1

1

1 1 1
...

1 2 2

1 1
1 ...

2 2
. . ... .

. . ... .

1 1
... 1

2 2

W

��� �
� ���� �
� �
� �
� ��
� �
� �
� �
� �
� �
� �

The first cell element of W1 is 
11

1

��
��  which contains two unknown parameters �1 and �. Wee

partitioned W1 into four sub matrix namely W111
, W112

, W121
 and W122

 define as follows :

11 12

21 22

1 1

1
1 1

W W
W

W W

� �
� � �
� �



Rabindra Nath Das and Sabyasachi Mukherjee

6 Journal of Econometrics and Statistics, 1(1) © 2021

where the first partitioned matrix W111
 contains only the first cell element is 

11

1

��
�� , W112

 and W121

are the transpose to each other having the elements 
1 1 1

, , ...,
2 2 2

� �
� �
� �

 with dimension ( 1 1)N � � .

For estimation purposes, we have taken the marginal distribution of Z0 = (Z2, Z3, ..., Z(N–1))�,
excluding Z1 from the Z.  From the model as in equation (5), it can be considered for Z0 as follows:

Z
u
 = �1su1 + �2su2 + �

p
s

up +��u
; 2, 3, ..., 1u N� �

or Z0 = S0� + �0 (6)

where S0 is the new model matrix with s
uj
 = (x

uj
 – x

Nj
); 2, 3, ..., 1u N� � ; j = 1, 2, ..., p; �0 = (�2, �3,

..., �
N–1)�, E(�0) = 0; D(�0) = �1

2 W122
, �1

2 = 2�2(1 – �); and �0 ~ MN(0, �1
2 W122

). The related

dispersion matrix is W122
 (with order 2 2N N� � � ) , and it can be shortly written as W122

 =

2 2

1 1

2 2N NI E� �
� ��� �
� �

 = W2 (say), where I is an identity matrix, E is a matrix of all elements unity, and

W122
 is explicitly expressed as follows:

221

1
1 ...

2 2
1 1

1 ...
2 2
. . ... .

. . ... .

1 1
... 1

2 2

W

�� �
� �
� �
� �
� �

� � �
� �
� �
� �
� �� �� �

The model in equation (6) is a generalized linear least squares model (with known W122
 = W2,

say). Therefore, we have the following results for the reduced model (6).
Theorm 1. Under the model (6), the best linear unbiased estimator (BLUE) of � is

1 1 1
0 2 0 0 2 0ˆ ( ) ( )S W S S W Z� � �� �� � (7)

where 
1

2 2 22 .
1N NW I E

N
�

� �
�� �� � �� �
�� �

Theorm 2. An unbiased estimator (UE) of �1
2 = 2�2(1 – �) is

1 1
2 0 2 0 0 2 0
1

ˆ ˆ( )
ˆ

( 2)

z W z S W S

N p
(8)
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Note that 2 1 1
1 0 2 0ˆ ~ ( , ( ) )MN S W S� ��� � � , and �̂  does not depend on the other unknown parameters

�, �1 and �1
2 .

The scheme for calculations of other unknown parameters is given hereunder. From equation
(4), one can find the estimate of �0 as

0 1 1 2 2
ˆ ˆ ˆ ˆ... p py x x x� � �� �� � �� (9)

where 1 2
ˆ ˆ ˆ, , ..., p� � �  are as in equation (7) because 1 2 1

ˆ ˆ ˆˆ ( , , ..., ) , , , ...,p py x x�� � � � �  (respective means)

are known.
Theorem 3. An estimate of �0 for known  is �2 is

1 1
0 2 0 0 2 0

2

ˆ ˆ( )1
ˆ 1

2 ( 2)

Z W Z S W S

N p

� �� �� � �
� � �

� � � (10)

To estimate � for unknown �2, an estimate of �2 is required.
Theorem 4. An estimate of �2 (from the full model (4)) is

��
2 0 0ˆ

1

e e

N p

�
� �

� � (11)

where �
1

2
0 0

ˆ ˆ ˆ ˆ( ), ( , )e W Y X
�

� �� � � � � � �  and W is obtained from the scheme given below..

The scheme for calculations of W (i.e., �, �1 and �2) is given below.
1. Assume some value of �1 ��(–1, 1).
2. Compute �̂  using Equation (10) (taking �2 = 1 in the first iteration, and for any other

iteration, 2�̂  by plugging for �2 obtained in step 5 just in the previous iteration).

3. With the assumed value of �1, say 1�̂ , and the estimate of �, say �̂  in step 2, compute W

(examining W is non-singular) and W–1 as in Equation (3).

4. Calculate 1 1 1ˆ ( ) ( )X W X X W Y� � �� �� � , assuming X has full column rank.

5. Compute 2�̂  using Equation (11).

6. Calculate 1
0 1

ˆ ˆ ˆˆ( , ) ( ) ( )S Y X W Y X��� � � � � � � , where W–1 as in step 3 and �̂  is as in step.
The same routine of calculations 1 through 6 is to be followed for different permissible values

of �1 in its range. We select that value of �1 as the final estimate of �1 for which 0 1
ˆˆ( , )S � �  is

minimum. For the final estimate of �1, we get the final estimate of � in step 2. Thus, for the final
estimates of � and �1, one can compute W (an estimate of W) in step 3. Note that the estimates of all
the regression parameters �0 (in (9)) and � in (7) are free of  and , so the above derived estimation
procedure of regression parameters is a robust method.
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3. Inference of Regression Parameters and Index of Fit

Testing of hypothesis regarding the unknown regression parameters is an important problem under
regression analysis. The present section focuses on the necessary results for testing a set of linear
hypotheses based on the model (6), where �0 ~ MN(0, �1

2W2), �1
2 is unknown but W2 is known.

3.1. Testing of Hypothesis

A set of m linear independent hypothesis regarding the unknown regression parameters are stated
as follows:

11 1 1 10

21 1 2 20

0

1 1 0

... ( )

... ( )
:

... ( )

p p

p p

m mp p m

l l l known

l l l known
H

l l l known

� � � � ��
�

� � � � ��
�
�
� � � � � ��

�

or H0 : R� = l0 (known) against H
A
 : R��� l0. Here rank (R) = m, where

11 1

21 2

1

...

...

... ... ...

...

p

p

m mp

l l

l l
R

l l

� �
� �
� �� � �
� �� �� �

 
and l0 = (l10, ..., lm0)�.

Note that �̂  ~ MN(�, �1
2(S�0W2

–1S0)
–1) as given in Section 2, therefore,

ˆR�  ~ MN(R�, �1
2R(S�0W2

–1S0)
–1R�) and under H0, ˆR�  ~ MN(l0, �1

2R(S�0W2
–1S0)

–1R�).
Therefore, under H0

( ˆR�  ~ l0)��[�1
2R(S�0W2

–1S0)
–1R�]–1 ( ˆR�  ~ l0) ~ �2

m 
,

where the degree of freedom m is given by the number of independent linear hypotheses in the R�

vector. Also for the model in Equation (6), 
1

2 22
0 2 0 0 0 0 1 ( 2)ˆˆ ˆ ˆ( ), / ~ ,R R R N pW Z S

�

� �� � � � � � � �  and it is

independent of ˆR� . Thus we have the following result.

Theorem 5. If R� = l0 is true, the basic result is

1 1 1
0 0 2 0 0

,( 2)
0 0

ˆ ˆ( ) [ ( ) ] ( ) /
~ .

ˆ ˆ /{( 2) } m N p
R R

R l R S W S R R l m
F F

N p

� � �

� �

� � ��� ��
�

�� � � � (12)

H0 is rejected at 100�% level of significance, if observed F > F�; m,(N–2)–p
, and accepted otherwise.

Note that the test statistic in (12) is free of �1 and �, so the above test procedure is robust.
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3.2. Confidence ellipsoids of regression parameters

In the present subsection, the confidence ellipsoids for a set of independent linear functions of
regression parameters and the confidence interval for a linear function of regression parameters are
developed. Note that S0 has full rank (assumed), so every linear function of �1, �1, ..., �p

 are estimable
for the linear model in Equation (6).

Suppose �1, �2, ..., �v
, are v independent linear functions of �1, �1, ..., �p

. Let �v = (�1, �2, ...,
�

v
)� be a vector of order v × 1. Then

��= C�,
where ��= (�1, ..., �p

)� and C(known) is a v × p matrix whose rows are linearly independent. Then

0ˆ AZ� �  is the GLS estimate of � (for the model in Equation (6)), and A = ((a
ij
)) (known matrix

depending on �
is
). Thevariance-covariance matrix of �̂  is then

2
0 1 2ˆ( ) ( ) ( ),Dis ADis Z A AW A� �� � � �

where 2 2 2

1 1

2 2N NW I E� �
� �� �� �
� �

. Note that  2
1 2ˆ ~ ( , ( ))MN AW A�� � �  and is independent of

1
20 0 0 0 2 0 0
( 2)2 2

1 1

ˆ ˆˆ ˆ ( ) ( )
~R R

N p

Z S W Z S�

� �

� �� � � � � �
� �

� �

Again

2 1 2
1 2ˆ ˆ( ) { ( )} ( ) ~ ,vAW A �� �� �� � � �� �

and independent of 2
0 0 1ˆ ˆ /R R� � �  (for the model in Equation (6)). Therefore, we have the following

result.
Theorem 6. The distribution of the test statistic is

1
2

,( 2)
0 0

ˆ ˆ( ) ( ) ( ) /
~

ˆ ˆ( ) /(( 2) ) v N p
R R

AW A v
F F

N p

�

� �

� �� �� � ��
�

� � � � (13)

Therefore,

1 2
2 ; , ( 2)

ˆ ˆ( ) ( ) ( ) v N pAW A vs F�
� � �� �� � � � �� � (14)

where 2 0ˆ ˆ

( 2)
R oRS

N p

�� �
�

� �
 which is an UE of �1

2 in Equation (8).

Inequality (14) determines an  ellipsoid in the v-dimensional �-space with center

1 2ˆ ˆ ˆ ˆ( , , ..., )v �� � � � � , and the probability that this  random ellipsoid covers the true parameter � is

(1 – �), no matter whatever be the values of �1 and � unknown parameters.
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We may obtain a confidence interval for a single linear function � = c��(c ��0) by specializing
the above calculation to v = 1. The resulting confidence interval is given by

1 2 2
2 ;1,( 2)

ˆ( ) ( ) N pa W a s F�
� � �� � � � � (15)

where 0ˆ a Z�� �  is the GLS estimate of �. Note that 2
0 1 2ˆ( ) ( ) ( )Var a Dis Z a W a� �� � � � � , and its

unbiased estimate 2 2
ˆ 2ˆ ( )s a W a� �� � .  We may write the Inequality (15) as

ˆ ˆ
,( 2) ,( 2)

2 2

ˆ ˆˆ ˆ ,
N p N p

t t� � � �� � � �
� � � � � �� � � (16)

the probability that this random interval covers the unknown � is (1 – �). The interval (16) could

also be derived from the fact that ˆ ( 2)ˆ ˆ( ) / ~ N pt� � �� �� � . Note that the above inference procedures

are free of the values of �1 and � unknown parameters.  Therefore, all the derived inference procedures
are robust.

3.3. Index of fit

The original model of the present study is given in Equation (4), and Equation (6) is the transformed
(or reduced) model. In the present section, the index of fit is suggested for the models in Equations
(4) and (6). Analogous to uncorrelated errors, two criteria of judging the best fit are described for
the models in Equations (4) and (6), under a special form of compound symmetry error structure in
Equation (3).

For multiple regression analysis with uncorrelated and homoscedastic errors, the index of fit
is measured by the multiple correlation coefficient (R2), and adjusted multiple correlation coefficient
(R2

adj
) of the fitted regression model. Analogous to uncorrelated case, we define the multiple

correlation coefficients R2(Y), R2(Z0), and adjusted multiple correlation coefficients R2
adj

(Y), R2
adj

(Z0)
for the fitted models in Equations (4) and (6), respectively, as follow:

2 2 ˆ( ) . ( , )R Y Corr Y Y�  and 
0

2 0 0
0

ˆ ˆ
( ) 1 ,R R

Z

R Z
TSS

(17)

2 21
( ) 1 (1 ( ))

1adj

N
R Y R Y

N p

�
� � �

� �
 and  2 2

0 0

( 2) 1
( ) 1 (1 ( )),

( 2)adj

N
R Z R Z

N p

� �
� � �

� �
(18)

where 
1

2
0 2 0 0 ˆˆ ( )R W Z S

�
� � � � , 

0

1
0 0 2 0 0( ) ( )ZTSS Z Z W Z Z

�

��� � � , 
1

0 2
/( 2)

N

jj
Z z N

�

�
� ��  (for the model

in Equation (6)). Generally, R2 and R2
adj

 as in Equations (17) and (18) are both close to unity for a
good fitted model (Illustration Section 3.4).
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3.4. Illustration

In the above, all the necessary regression analysis results are derived based on theory. It is noted
that the considered special compound symmetry correlated error structure contains two unknown
correlation coefficients �1 and �, but the derived results are free of both these two correlation
coefficients. In this section, a simulated data example illustrates all the above derived results. Let
‘y’ be the response variable with sixty observations in total. According to the defined structure
there are two groups, the first group contains only one observation and the other has the rest fifty
nine observations.

The model matrix X is formed using three factors (exploratory variables) x1, x2 and x3. The
appropriate changes of origin and scale are used for the exploratory variables such that the values
lie between –1 to 1 (the range within which the experimentation is conducted). Considering three
factors as explanatory variables the assumed model is

Table 1 : Responses under the simulation setting of ( 2  = 2,  = 0.8, 
1

 = 0.1)

Observation Value Observation Value Observation Value

1 3.358 21 3.265 41 6.829

2 3.873 22 4.320 42 –0.393

3 –0.441 23 3.233 43 2.532

4 7.062 24 –0.419 44 4.559

5 2.014 25 6.985 45 2.295

6 3.009 26 7.045 46 3.168

7 5.078 27 –0.381 47 4.566

8 2.695 28 3.221 48 –0.959

9 –0.965 29 4.663 49 16.722

10 7.458 30 3.374 50 2.608

11 7.044 31 3.263 51 3.154

12 –1.533 32 4.580 52 4.773

13 3.060 33 –0.572 53 2.433

14 3.759 34 7.207 54 –0.486

15 3.590 35 3.359 55 7.216

16 2.924 36 3.093 56 7.194

17 5.147 37 5.248 57 0.045

18 –0.854 38 3.246 58 3.165

19 6.499 39 –0.777 59 4.104

20 2.746 40 7.341 60 3.498
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y
u
 = �0 + �1xu1 + �2xu2 + �3xu3; u = 1, 2, ..., 60 (19)

The generated  values are displayed in Table 1, using the fixed model matix X, which is defined
as

1 0 0 0

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 0 0 0

1 1 1 1

,  where 1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 0 0 0

D

D
X D

D

D

� �
� �
� �
� �� �
� �

� �� �
� �� �
� �
� �

� � � �
� � � �� �� � � � �� �� � � �� �� �� � � �� � � ��

� �
� �� �

� ��
� �

� �� �
� ��� �� �� �� �

In the absence of real data we generate observations according to the formula (19) with �0 =
3.5, �1 = 2.5, �2 = –1.5, �3 = 0.05, �2 = 2, � = 0.8 and �1 = 0.1 using the above model matrix “X”
and e ~ MN(0, �2W) where W is given in equation (3). The observations obtained are given in
Table 1. For this present simulation study, the article considers the following eight combinations of
parameters (�2, �, �1), with fixed �0 = 3.5, �1 = 2.5, �2 = –1.5, �3 = 0.05. The combinations are �2

= 1, 2; � = 0.4, 0.8; �1 = 1.1, 0.6.
Using these combinations, we take each simulation setting and repeat the entire calculation

100 times. The sample bias, sample variance for every estimate, where sample bias and sample
variance for the parameter � are defined by

ˆ
ˆ ˆ ˆ( ) ,

100
Bias

��
� � � � � � �  and 

2ˆ( )ˆ( )
100

Var
� � � �

� �

Summarized simulation results are given in Table 2.
We consider the following four linear hypotheses (given in Table 3) for testing of hypotheses.

Each hypothesis is tested 100 times using the equation ( ) and the results are reported in Table 3.

The average values of 200 replicates for two index of fit measures R2(Y), R2(Z0), R
2
adj

(Y) and
R2

adj
(Z0) using the equations (17 and 18) are reported in Table 4. These two index of fit measures are
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Table 2: Simulation results: ˆ ˆ ˆ ˆ ˆ ˆ ˆ  and ˆ

�
0
 = 3.5 �

1
 = 2.5 �

2
 = –1.5 �

3
 = 0.05 2�̂

0
ˆ

1
ˆ

2
ˆ

3
ˆ ˆ 1�̂

2
1�̂

� = 0.8, �
1
 = 0.1, �2 = 1

Mean 3.441 2.505 –1.500 0.040 0.759 0.931 0.891 0.405
Bias ˆ( )� 0.059 0.005 0.0002 0.009 0.041 0.831 0.109 0.005
Var ˆ( )� 0.863 0.004 0.004 0.003 0.015 0.005 0.018 0.006

� = 0.8, �
1
 = 0.1, �2 = 2

Mean 3.593 2.508 –1.502 0.048 0.552 0.829 0.920 0.811
Bias ˆ( )� 0.093 0.008 0.002 0.001 0.248 0.729 1.080 0.011
Var ˆ( )� 1.453 0.007 0.010 0.008 0.010 0.003 0.011 0.024

� = 0.4, �
1
 = 0.1, �2 = 1

Mean 3.473 2.501 –1.502 0.045 0.375 0.743 0.983 1.230
Bias ˆ( )� 0.026 0.001 0.002 0.004 0.025 0.643 0.016 0.030
Var ˆ( )� 0.417 0.013 0.013 0.014 0.011 0.003 0.0003 0.050

� = 0.4, �
1
 = 0.1, �2 = 2

Mean 3.460 2.532 –1.504 0.044 –0.232 0.443 1.009 2.490
Bias ˆ( )� 0.039 0.032 0.004 0.005 0.632 0.343 0.990 0.090
Var ˆ( )� 0.794 0.023 0.023 0.028 0.046 0.012 0.0003 0.202

� = 0.4, �
1
 = 0.6, �2 = 1

Mean 3.542 2.505 –1.507 0.043 0.406 0.759 0.996 1.184
Bias ˆ( )� 0.042 0.005 0.007 0.006 0.006 0.159 0.003 0.015
Var ˆ( )� 0.505 0.010 0.011 0.013 0.011 0.003 0.0001 0.045

� = 0.4, �
1
 = 0.6, �2 = 2

Mean 3.551 2.507 –1.514 0.040 –0.198 0.460 1.0009 2.399
Bias ˆ( )� 0.051 0.007 0.014 0.009 0.598 0.140 0.999 0.0003
Var ˆ( )� 0.728 0.024 0.019 0.025 0.043 0.011 0.000 0.177

� = 0.8, �
1
 = 0.6, �2 = 1

Mean 3.484 2.505 –1.495 0.054 0.789 0.945 0.956 0.401

Bias ˆ( )� 0.015 0.005 0.004 0.004 0.010 0.345 0.043 0.001
Var ˆ( )� 0.795 0.003 0.004 0.003 0.001 0.002 0.004 0.004

� = 0.8, �
1
 = 0.6, �2 = 2

Mean 3.467 2.495 –1.497 0.058 0.585 0.848 0.962 0.794

Bias ˆ( )� 0.032 0.004 0.002 0.008 0.214 0.248 1.037 0.005
Var ˆ( )� 1.349 0.007 0.008 0.007 0.007 0.003 0.004 0.026
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considered for the following four models (replicates generated with �0 = 3.5, �1 = 2.5, �2 = –1.5, �3

= 0.05, �2 = 2, � = 0.8 and �1 = 0.1 values):

M1: y = �0 + �1x1 + �2x2 + �3x3 + e,

M2: y = �0 + �1x1 + �2x2 + �3x3 + e,

M3: y = �0 + �1x1 + �2x2 + �3x3 + e,

M4: y = �0 + �1x1 + e.

Table 4: Average index of fit measures from 200 replicates for the four models M
1
 to M

4

Model R2(Y) R2(Z
0
) R2

adj
(Y) R2

adj
(Z

0
)

M
1

0.9251 0.9255 0.9211 0.9227
M

2
0.9222 0.9224 0.9181 0.9196

M
3

0.6971 0.3975 0.6916 0.3938
M

4
0.6954 0.3959 0.6898 0.3921

4. Conclusions

The present article derives the regression analysis with correlated observations under a special type
of compound symmetry correlated error structure. The derived estimation method gives the best
linear unbiased estimator (BLUE) for all the regression parameters except the intercept. Analytically,
the estimates of all regression coefficients �’s, �2, � and �1 are derived herein. The simulation study
clearly shows that each estimated value is very close to its imputed value. Table 3 reflects the true
values of regression parameters. The true model can be selected from Table 4, which expresses that
M1 and M2 models are equivalent, while models M3 and M4 are incorrect. The values of R2(Y) and
R2

adj
(Y) are the real index of fit measures for the original model, whereras R2(Zo) and R2

adj
(Z0) are the

measures for the reduced model. It can be observed that the value of R2(Z0) (or, R2
adj

(Z0)) is more
than R2(Y) (or, R2

adj
(Y)) for the correct models and these values are less for incorrect models (Table

4), as R2(Z0) is based on the BLUEs. It has been observed that for a regression model with a special
type of compound symmetric error structure (considered herein), the estimates of regression

parameters ˆ( )�  are generally used for deriving all the results, while the estimates 0 1
ˆ ˆ,  � � , and �̂  are

Table 3 : Test result from 100 replications with  = 0.05

Null Hypothesis Degrees of freedom Accepted cases Rejected cases

H
01 

: �
1
 = �

2
 = �

3
 = 0 (3, 54) 0 100

H
02 

: �
1 
= 0 (1, 54) 0 100

H
03 

: �
2
 = 0 (1, 54) 0 100

H
04 

: �
3 
= 0 (1, 54) 93 7
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not used in any derived results. The estimates 0 1
ˆ ˆ,  � �  and are used in case of the index of fit measure

for the full model only, which is not important in the study. All the derived results are free of all the
values of the two correlation coefficients, so the present study is a robust regression analysis.
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